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Abstract The shredding of waste of electrical and
electronic equipment (WEEE) and other products,
incorporated with nanomaterials, can lead to a sub-
stantial release of nanomaterials. Considering the
uncertainty, complexity, and scarcity of experimental
data on release, we present the development of a

Bayesian belief network (BBN) model. This baseline
model aims to give a first prediction of the release of
nanomaterials (excluding nanofibers) during their
mechanical shredding. With a focus on the descrip-
tion of the model development methodology, we
characterize nanomaterial release in terms of number,
size, mass, and composition of released particles.
Through a sensitivity analysis of the model, we find
the material-specific parameters like affinity of
nanomaterials to the matrix of the composite and
their state of dispersion inside the matrix to reduce
the nanomaterial release up to 50%. The shredder-
specific parameters like number of shafts in a shred-
der and input and output size of the material for
shredding could minimize it up to 98%. The compar-
ison with two experimental test cases shows promis-
ing outcome on the prediction capacity of the model.
As additional experimental data on nanomaterial re-
lease becomes available, the model is able to further
adapt and update risk forecasts. When adapting the
model with additional expert beliefs, experts should
be selected using criteria, e.g., substantial contribu-
tion to nanomaterial and/or particulate matter release-
related scientific literature, the capacity and willing-
ness to contribute to further development of the BBN
model, and openness to accepting deviating opinions.
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Introduction

Rapidly developing markets such as green construction,
energy harvesting and storage, advanced materials for
aerospace, electronics, medical implants, and environ-
mental remediation are potential key application targets
for nanomaterials. There, nanotechnology has the poten-
tial to make qualitative improvements or indeed even to
enable the technology (Kearney 2017). Impacts range
from increased efficiency of energy harvesting or storage
batteries to radical improvements in mechanical proper-
ties for construction materials. In addition, concerns of
these markets such as scarcity of materials, cost, security
of supply, and negative environmental impact of older
products could also be addressed by new nano-enabled
materials. For this, the development of a novel framework
to enable naming, classification, hazard, and environmen-
tal impact assessment of present and future generation
nanomaterials (Renn and Roco 2006) is a prerequisite for
their safe, sustainable, and responsible industrial devel-
opment (FutureNanoNeeds 2017; Lynch 2014).

FutureNanoNeeds, a EU seventh framework project,
aims to do so by primarily responding to regulatory
needs of future nanomaterials and markets. This project
integrates concepts and approaches from several well-
established contiguous domains to develop a robust,
versatile, and adaptable naming approach, coupled with
a full assessment of all known biological protective
responses as the basis for a decision tree for screening
exposure and hazard of nanomaterials at all stages of
their life cycle. Together, these tools form the basis of a
value chain (VC) regulatory process which allows each
nanomaterial to be assessed for different applications on
the basis of available data and the specific exposure and
life cycle concerns for that application.

A material or substance flow analysis is a useful
technique to quantify potential emissions of various
substances, including nanomaterials, into different envi-
ronmental compartments like air, surface or ground
water, sediments, etc. (Kaegi et al. 2008; Arvidsson
et al. 2011; Gomez-Rivera et al. 2012; Gottschalk
et al. 2015). The potential sources of emission in prod-
uct’s different life cycle stages are first estimated in this
technique. A mass balance is then done between the
amount of nanomaterial present in the product and its
emitted percentage for each estimated life cycle stage.
Hauck et al. (2017) used this technique to quantify
potential lead emissions from production, use, and
end-of-life of perovskite in tandem solar cells. They

found end-of-life stage to be the main contributor to
the emission of lead into the environment. Within the
framework of FutureNanoNeeds, a prior material flow
analysis was also carried out, as mentioned by Hauck
et al. (2017), for several VCs involving perovskite-
based photovoltaic (PV) panels, lithium ion batteries,
and quantum dot-enabled electronic displays. The
shredding of the waste generated from these VCs, i.e.,
waste of electrical and electronic equipment (WEEE)
(Mitrano et al. 2015), was identified as one of the
hotspots of nanomaterial emissions among other life
cycle stages—an observation similar to the findings in
the pertinent literature (Bystrzejewska-Piotrowska et al.
2009; Ling et al. 2012; Marcoux et al. 2013). Other
findings in the literature include Caballero-Guzman
et al. (2015) who found the recycling stage to be a
Bhotspot^ of nanomaterial exposure during the assess-
ment of flows of nanoparticles of TiO2, ZnO, Ag, and
CNT in the recycling system in Switzerland. Deng et al.
(2014) found a high concentration of heavy metals (Cu,
Pb, Cd, Cr, and Ni) in the sampled dust during the
exposure assessment of shredding at a WEEE recycling
site. The findings of Kohler et al. (2008) suggested the
likeliness of the release of CNTs during disposal phases
of CNT-treated products like Li-ion batteries and
textiles.

In spite of the concern with nanomaterial release/
exposure during shredding of nano-enabled products,
the experimental data is uncertain, complex, and sparse
(Chien et al. 2003; Oguchi et al. 2012; Part et al. 2015).
In this context, the use of a Bayesian belief network
(BBN) to forecast the nanomaterial release can be use-
ful. BBN represents a branch of Bayesian modeling
where the probability distributions are generally
expressed in discrete form and solved analytically
(Uusitalo 2007). A BBN is a directed acyclic graph that
provides a coherent structure to make a priori assump-
tions about unknown variables, which can be used to
generate forecasts and associated levels of uncertainty. It
is expected to be advantageous in the forecasting of
nanomaterial release because it can handle missing data,
facilitate the learning of causal relationships between
variables, and show good prediction accuracy also with
smaller sample sizes; they also consist of formal rules
that can be updated when new information becomes
available (Wiesner and Bottero 2011; Uusitalo 2007).
In terms of complexity, BBN has been shown to be
pragmatic and scientifically credible to model complex
and uncertain systems (Marcot 2012;Money et al. 2012;

33 Page 2 of 17 J Nanopart Res (2018) 20: 33



www.manaraa.com

Beaudrie and Kandlikar 2011). More interestingly, it has
been explicitly used in the past to assess the risks asso-
ciated with nanomaterials to both humans and environ-
ment (Money et al. 2012; Marvin et al. 2017; Bilal et al.
2017; Murphy et al. 2016). For example, Money et al.
(2012) developed a baseline BBN model that integrates
Ag nanoparticle-specific characteristics and aquatic
environmental parameters for forecasting their fate and
risks. Marvin et al. (2017) predicted biological effects
and hazard potential of TiO2, SiO2, Ag, CeO2, and ZnO
nanoparticles in humans. Bilal et al. (2017) assessed
multimedia distributions and concentrations of Al2O3,
CeO2, Cu, SiO2, TiO2, and ZnO nanoparticles in the
environment by using a BBN model. Murphy et al.
(2016) mapped the secondary data on the occupational
exposure, obtained from US NIOSH exposure recom-
mendation reports and several EU-funded research pro-
jects based on the risk estimation of CNTs, Ag, and TiO2

nanoparticles to a control banding using BBN. One
common limitation of these studies is that they consider
nanomaterials in their individual or agglomerated form
upon release. However, in reality, the released
nanomaterials are normally found attached to or embed-
ded in the matrix of the product from which they were
released (Lowry et al. 2010; Shandilya et al. 2014a).

This article presents a baseline model which aims to
give a first forecast of the potential airborne releases of
nanomaterials during shredding for three VCs involving
perovskites, quantum dots, and carbon-based
nanomaterials. Instead of developing a model which is
based on nanomaterial specific properties like their sur-
face area, reactivity, coating, charge, and dissolution (as
seen in most of previous BBN models for nanomaterial
exposure assessment, for instance Money et al. 2012;
Marvin et al. 2017), we based the model on the material-
related properties of the composites in which they are
normally used. The other set of parameters of influence
is related to the shredding process. The model uses these
input parameters to forecast the nanomaterial release in
terms of discrete distributions of number, size, mass, and
composition of released particles. We only consider the
initial release of the nanomaterial, i.e., dissociation of
nanomaterial from nanocomposites (Froggett et al.
2014) at the source (process) due to the time constraints
in modeling nanomaterials transport and their simulta-
neous transformation from source to receptor or expo-
sure (Ding et al. 2017a; Goswami et al. 2017). This is,
however, one of the major perspectives for future work
and should be dealt with later.

Before we present the methods and results, we would
like to stress that the BBN model for nanomaterial
release presented here should be seen as the base for
further model development and we do not pretend to
present an almost final model. The development of the
BBN model should also be seen as an example to bring
together expert knowledge for cases where data on the
behavior of nanomaterials in (complex) systems is
limited and to formalize the existing knowledge into a
formal model.

Methods

Bayesian belief network theory

As described earlier by Marcot (2012) and Marvin et al.
(2017), BBN is a probabilistic graphical model that
represents probabilistic relationships among a set of
nodes via a directed acyclic graph. The nodes, in turn,
represent random variables U = {Ai, Aj, …, An} with a
respective set of mutually exclusive states. The directed
links, i.e., the arrows between the nodes, indicate the
relationship among them. A node Ai is the parent of the
child node Aj, if there is a link from Ai to Aj. BBN
specifies a unique joint probability distribution of all
nodes given by the product of all conditional probability
tables specified in BBN:

P Uð Þ ¼ ∏
n

i¼1
P Aijpa Aið Þð Þ ð1Þ

In Eq. 1, pa(Ai) are parents of node Ai and P(Ai|
pa(Ai)) specifies a conditional probability distribution.
The calculations are based on Bayesian theory, where
the probability of event A at the condition of event B is
expressed as:

P AjBð Þ ¼ P BjAð Þ � P Að Þ
P Bð Þ ð2Þ

In Eq. 2, P(A) is the a priori probability of A, P(B|
A) is the conditional probability ofB under the condition
of a known event A, and P(B) is a priori probability of B.

Process of BBN model development

The development of a BBN heavily leans on the input
from experts. As there is not enough data available in
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the context of nanomaterials release, their knowledge
is crucial in deciding the variables affecting the re-
lease and their dependence in the form of conditional
probabilities. A similar approach has also been used
in the past to generate the conditional probabilities
(Money et al. 2012; Marvin et al. 2017). From the
start of the model development, 10 experts with dif-
ferent expertise and professional backgrounds like
aerosol science, material science, epidemiology, and
statistics were involved. The experts were selected
from within and outside the FutureNanoNeeds con-
sortium. Experts from the shredder manufacturing
and resale and from the recycling industry were
interviewed to gather information on shredder con-
figuration and use. The experts involved could be
characterized mainly as generalists and subject mat-
ter experts (Knol et al. 2010). The process of the
development was led by a BBN expert. Although
expert selection criteria were not made formally,
three selection criteria were used in selecting, espe-
cially the external experts. These criteria were:

& Expert knowledge of ENM release to air
& Expert knowledge of particulate matter release from

physical processes especially shredding
& Expert knowledge on physical material properties

affecting particulate matter release to air

More details on the experts involved are provided in
the Supplementary Information. Release data of nanopar-
ticles were collected from 25 studies reported in the
scientific literature in the period of 2007–2015. In addi-
tion, information was also used from commercial shred-
der manufacturers. This information was retrieved by
contacting manufacturers directly and inquiring for the
knowledge needed to detail-specific shredder-related
parts of the model. A five-step structured approach was
followed, based on the general knowledge acquisition
process, to develop the graphical structure and to elicit
the needed prior probabilities. The five steps taken were:
1. Identification of the most important variables (both

material and shredding process related)
2. Identification of the conditional links between these

variables
3. Determination of the possible states for each

variable
4. Review, refinement, and completion of the graphi-

cal structure (variables and dependencies)

5. Determination of the conditional probabilities for
dependencies between variables, in so-called con-
ditional probability tables (CPTs)

The steps 1–4 were based on a combination of struc-
tured brainstorming, individual inputs, and group dis-
cussions/reviews. In the steps 1 and 2, the experts
attempted to develop a structured model in which the
main parameters and their relationships were included
that predict the release of nanomaterials during shred-
ding of waste. In this way, the scientific understanding
was formalized to a certain extent. This approach is
useful if case-measured data are lacking, see, e.g.,
(Kandlikar et al. 2007). It was an iterative process, with
each iteration improving the understanding of the sub-
ject matter by thinking about how this should/could be
modeled in a BBN, which factors are indeed relevant,
how are they defined, and how do they depend on the
other relevant factors. Going through the iterative pro-
cess, an increased group understanding among the ex-
perts was achieved which indeed benefitted the (quality
of the) model. For step 5, the a priori probabilities were
determined for each variable individually using an ex-
pert elicitation process based on a Delphi-like approach.
This approach ensured that different opinions of the
experts are all taken into account, while offering an open
podium to share arguments for certain assessments. The
approach works in the following way:

1. Determine which experts will join the assess-
ment for the variable at hand as not every expert
had relevant expertise to give an assessment for
each var iab le ( l i s t o f exper t s in the
Supplementary Information).

2. Determine if these experts together (as group) have
enough expertise to assess the a priori and condi-
tional probabilities. If not, more expertise or specific
information was obtained (e.g., from shredding
manufacturers).

3. Perform the elicitation process:

a. Each expert notes down his individual assess-
ment for each probability in the CPT of the
variable at hand

b. Collect the individual assessments and deter-
mine the average

c. Share and discuss the assumptions/underlying
understanding each of the experts used when
determining their individual assessments
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d. Show the assessments, both individual and av-
erage, and discuss the differences between them

e. Give option to each expert to revise their indi-
vidual assessment in light of the discussion/
arguments of other experts

f. Consensus on the average values

As a result, a total of 1089 probabilities were elicited
to build 22 CPTs—1 CPT per variable. The CPTs are
shown in the Supplementary Information. Eventually,
consensus was reached for all probabilities (all experts
agreed on the use of the average, after one or more
revision rounds). All structures and CPTs were imple-
mented using GeNIe v2.0.4779.0 (Decision Systems
Laboratory; University of Pittsburgh).

The model

Figure 1 shows the BBN model. It consists of four types
of variables: (i) input variables which account for the
material related properties/parameters (shown in blue
color; e.g., hardness composite, nano-object size, brittle-
ness, composite) and shredding process-related proper-
ties (shown in green color; e.g., number of shafts, teeth,
width of knives), (ii) Switch variable (shown in orange

color, i.e., choice between primary or secondary shred-
der) which accounts for the adjustment needed between
two possible uses of the model, (iii) intermediate vari-
ables (shown in white color; e.g., comminution potential,
net energy, generated surface) which combine the effect
of input variables together, and (iv) goal variables (shown
in yellow color; e.g., number, size, composition, and
mass of released particles) which characterize the release
of particles during shredding. The combination of these
variables is therefore predictive for release.

In Tables 1 and 2, material and process-related input
variables are enlisted respectively with their description,
the states in which they are considered to vary and their
a priori probabilities elicited by the experts within the
scope of selected VCs. The description and elicited a
priori probabilities for the intermediate variables are
provided in the Supplementary Information. The whole
model can be accessed at https://www.futurenanoneeds.
eu/outputs/fnn-bbn-shredding-model/.

Sensitivity analysis

To investigate the sensitivity of the output variables, i.e.,
number, size, mass, and composition of released parti-
cles with regard to the input parameters (including both

Fig. 1 Graphical structure of the BBN model. The material-
related input parameters are in blue-colored nodes; the process-
related input parameters are in green-colored nodes; a process

switch variable is in orange-colored node; the intermediate
variables are in white-colored nodes; and the goal variables are
in yellow-colored nodes
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Table 1 Material related input variables of the BBN model

Variable Description Variable states A priori probability
in each state

Hardness composite
(Mohs scale)

This variable characterizes the scratch
resistance of different materials to shred
through the ability of a harder material to
scratch a softer material. To shred a
composite, it should be less hard than the
shredder blades which are generally made
of hardened steel and have hardness values
between 7 and 8 on the Mohs scale.

State 1: 3–4 State 1: 33%

State 2: 5–6 State 2: 37%

State 3: 7–8 State 3: 30%

Nano-object size (nm) It is the primary particles size of the
nanomaterial (< 100 nm, in isolated or
aggregated or agglomerated form) with
which the composite is reinforced.

State 1: < 10 State 1: 10%

State 2: 10–50 State 2: 50%

State 3: 50–100 State 3: 40%

Isotropy composite This variable indicates the degree of
uniformity towards the mechanical stress,
applied via shredding, inside the material to
shred.

State 1: Isotropic State 1: 17%

State 2: Intermediate State 2: 48%

State 3: Anisotropic State 3: 35%

Toughness composite A certain amount of energy is required to
break down the material during shredding.
This energy is indicated in terms of its
BToughness.^ A tough material tends to
absorb a lot of energy and deform rather
than break/fracture (e.g., metals) while a
not tough material tends to fracture as soon
as certain energy is applied (e.g., chalk).
Mathematically, toughness of a composite
can be defined as the amount of energy
absorbed per unit volume prior to fracture.

State 1: Tough State 1: 70%

State 2: Not tough State 2: 30%

Brittleness composite A ductile and brittle material breaks down
with and without significant deformation
respectively.

State 1: Brittle State 1: 52%

State 2: Ductile State 2: 48%

Nanoparticles in
composite (%)

It accounts for the mass of the nanomaterial
per unit mass of the matrix expressed in %.

State 1: < 1 State 1: 20%

State 2: 1–10 State 2: 60%

State 3: > 10 State 3: 20%

Affinity nanomaterial in
matrix

Based on prior chemical treatments or no
treatments, the adhesion of the
nanomaterial to the matrix in a composite
may considerably vary. Between the two
components, there can be (i) no bonding
due to almost no adhesion (as in mere
physical enclosure of nanomaterial inside
the matrix), (ii) weak bonding like van der
Waals forces, (iii) strong bonding via
morphological structures, or (iv) chemical
bonding with bonding strength similar to
the matrix material itself. In the first three
states, it is assumed that the bonding
between the two components has a failure
strength less than that of the matrix itself.
For the forth state, it is otherwise, i.e., the
composite tends to break in the matrix
rather than at the interface when shredded.

State 1: Not bonded State 1: 9%

State 2: Weakly bonded State 2: 29%

State 3: Strongly
bonded

State 3: 53%

State 4: Chemically
completely inbound

State 4: 9%

Dispersion state It is an indicator of how well the nanomaterial
is spread inside the matrix. The
nanomaterial can be (i) well dispersed, i.e.,
each nanomaterial in full contact with the

State 1: Well dispersed State 1: 25%

State 2: Moderately
dispersed

State 2: 19%
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material and process parameters), sensitivity analysis
(SA) of the proposed BBN model was done using a
one-at-a-time (OAT) method. This also helped to iden-
tify those input parameters where new information

would lead to the greatest reduction in uncertainty in
the forecasts and identify knowledge gaps. It is impor-
tant to note that OAT methods cannot account for the
interaction among different input parameters. All

Table 1 (continued)

Variable Description Variable states A priori probability
in each state

matrix, or (ii) moderately dispersed, i.e.,
some loose nanomaterial agglomerates or
their concentration gradients or both, or (iii)
fully agglomerated, i.e., presence of lumps
of nanomaterial which are partially or not at
all in contact with the matrix, or (iv) present
as a thick layer on the matrix (e.g., coating
on the original product or a sandwiched
structure of the original product). In the
present model, this variable also accounts
for the distribution of the energy absorbed
by the composite before it breaks during
shredding.

State 3: Fully
agglomerated

State 3: 7%

State 4: Layered State 4: 49%

Table 2 Process related input variables of the BBN model

Variable Description Variable states A priori probability
in each state

Primary or secondary
shredder

This variable is a switch to choosewhether the
material is being shredded for the first time
(primary) or for the second time (second
time). Since the choice entirely depends on
the user, therefore, no variable states and,
hence, a priori probabilities can be elicited
for it.

– –

Number of shafts A shredder unit is characterized by a single or
multiple counterrotating shafts (turning
towards each other). A single shaft
configuration offers an advantage of
stringent output particle size control and a
material breaking action similar to grating.
Because the system operates at higher rotor
speeds (80–120 rpm, sometimes even
higher), frequent maintenance and part
replacement are likely to occur should the
cutter encounter some heavymetals. On the
other hand, a multiple shafts configuration
operates at lower speeds (10–30 rpm) with
a material breaking action similar to
cutting. It is largely used because of its
viability to process heavy metals and low
damages to the equipment. In the present
model, this variable accounts for the total
energy provided by the shredding system to
break the material.

State 1: Single State 1: 5%

State 2: Multiple State 2: 95%

J Nanopart Res (2018) 20: 33 Page 7 of 17 33
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options of the input parameters are therefore considered
equally likely. Although interaction of parameters may
occur in actual release scenarios, the large number of
theoretical combinations (> 103) of input parameter pro-
hibits an attempt to systematically account for all poten-
tial interactions and most of the time they are unknown.
It is reasonable to assume that the uncertainty in the SA
introduced by not accounting for interactions is much
smaller compared with using unknown probability dis-
tributions of the parameter options (Riedmann et al.
2015). To carry out the analysis, the base value is taken

as the arithmetic mean of the output variables when all
the input variables are in their respective state 2. The
input variables were then varied to either extremities,
i.e., towards states 1 and 3 (only towards state 1 for the
variables with two states) to compute its effect on the
particular output variable. While doing this, only one
input variable was varied at a time and the others were
kept fixed. To vary the state of an input variable, its a
priori probability was put to 100% first for state 1 and
then to state 3. The complete calculations are shown in
the Supplementary Information.

Table 2 (continued)

Variable Description Variable states A priori probability
in each state

Width of knives (cm) The shaft(s) in a shredder are keyed to a series
knives/cutter discs. Depending on the type
of application and the material to shred, the
width of knives varies over a large range,
generally from 1 to 5 cm for the shredding
of plastic substrates, including WEEE.
However, for certain applications where
heavy metals and heavy power
requirements are involved, width of knives
is generally > 5 cm.With the increase in the
width of knives, the output size decreases.

State 1: < 2 State 1: 3%

State 2: 2–5 State 2: 73%

State 3: > 5 State 3: 25%

Number of teeth The number of teeth per knife generally varies
from 1 to 7, depending on the material to
shred and to which extent. There are some
cases where the number of teeth can be
greater than 8 when the required output
shredded size is much smaller than in
normal cases.

State 1: No teeth State 1: 0%

State 2: 1–7 State 2: 90%

State 3: 8–15 State 3: 10%

Sieve used Use of a sieve or screen during shredding is
decided on the need of a subsequent
reduction of the output particles size in a
closed loop. The output particles (once
shredded) can be fed back into the shredder
for further shredding if they are coarser
than the sieve size, thus allowing to have a
uniformly controlled maximum output
particles size. Hence, there may or may not
be a sieve present in a shredder depending
on the shredding output requirement.

State 1: Yes State 1: 38%

State 2: No State 2: 62%

Input size (cm2) It accounts for the physical dimensions of the
materials which are fed into a shredder.

State 1: < 1 × 1 State 1: 7%

State 2: 1 × 1–5 × 5 State 2: 29%

State 3: 5 × 5–10 × 10 State 3: 20%

State 4: > 10 × 10 State 4: 44%

Output size (cm2) It considers the final physical dimensions of
the shredded material as specified by the
manufacturer.

State 1: < 1 × 1 State 1: 28%

State 2: 1 × 1–2 × 2 State 2: 25%

State 3: 2 × 2–5 × 5 State 3: 35%

State 4: > 5 × 5 State 4: 12%

33 Page 8 of 17 J Nanopart Res (2018) 20: 33



www.manaraa.com

Results

Model results

Table 3 shows the information on the output variables,
i.e., number, composition, size, and mass of released
particles and their distributions as predicted by the
model. These results are produced by feeding the model
with a priori probabilities shown in Tables 1 and 2 for
the input variables pertaining to PV panels, Li-ion bat-
teries, and electronic displays.

Prediction capacity of the model

To evaluate the capacity of the BBNmodel in predicting
initial nanomaterial release during shredding, its predict-
ed results need to be compared with experimental cases
which together cover the possible situations (input) one
might encounter during shredding. Individually, each
case is run in the model, after which the outcome of
the model in each case is compared with the experimen-
tally determined output data from the respective case.

However, only one experimental case (Raynor et al.
2012) was found in the literature that deals with the
measurement of particle release around the shredder.
This experimental case is referred to as test case 1 in
the present study. It involved the shredding of a com-
mercial product—18CPP091 Forte Nanocomposite—
manufactured by Noble Polymers (Grand Rapids,
Michigan, USA) which was composed of polypropyl-
ene resin reinforced with approximately 5%, by mass of
montmorillonite nanoclay. The shredding was per-
formed using a 4-kW small-scale industrial grade shred-
der (Cumberland Engineering Corp., South Attleboro,
MA). The released particle concentration measurements
were taken adjacent to the shredder, i.e., with negligible
distance between source and measurement probe. It
must be noted that the addition of nanoclay reduced
the number concentration found by FMPS during
shredding.

There is another shredding related laboratory test
whose results are not yet available in the literature. It
was carried out at CEA-LITEN-NanoSafety Platform-
Grenoble, France. It concerns the shredding of nano-
enabled electrodes (cathode) made of a mixture of

Table 3 Goal variables of the BBN model

Variable Description Parent nodes Variable states Conditional
probability
in each state

Number of released
particles (in g−1)

It accounts for the number
of particles released/
aerosolized during
shredding of a unit gram
of the material prior
to any transformation.

1.1.1.1. Nano on generated surface
2. Probability of release
3. Generated surface

State 1: < 103 State 1: 64%

State 2: 103–106 State 2: 23%

State 3: 106–109 State 3: 7%

State 4: > 109 State 4: 6%

Composition of
released particles

Based on the parent nodes,
the released particles
may
vary in their
composition.

1.1.1. Net energy
2. Affinity of nanomaterial

in matrix
3. Dispersion in matrix

State 1: Individual
pure nanomaterial

State 1: 15%

State 2: Agglomerated
or aggregated pure
nanomaterial

State 2: 42%

State 3: Composite
of both
nanomaterial
and matrix

State 3: 43%

Size of released particles
(in nm)

It accounts for the initial
size of the released
particles prior to any
transformation.

1.1.1. Net energy
2. Physical morphology
3. Comminution potential

State 1: < 102 State 1: 27%

State 2: 102−2.5 × 103 State 2: 43%

State 3: 2.5 × 103−104 State 3: 30%

Mass of released particles
(μg/kg)

For a given mass of the
material to shred, it
accounts for the total
mass of the released
particles.

1.1.1.1. Number of released
particles

2. Size of released particles
3. Composition of released particles

State 1: < 101 State 1: 76%

State 2: 101–103 State 2: 13%

State 3: 103–106 State 3: 4%

State 4: > 106 State 4: 7%
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LiFePO4 mixture (LFP), Vapor-Grown Carbon Fiber
(VGCF), conductive carbon black (Super P, Super
C65) deposited on an aluminum foil. It is referred to as
test case 2 here. For this study, a 3-kW high-torque
shredder (SM300 cutting mill, Retsch GmbH, Haan,
Germany) equipped with a bottom sieve (5 × 5 mm2)
was operated at 1500 rpm. All direct-reading instru-
ments were connected to the same sampling probe that
was positioned approximately at 30 cm from the top of
the shredder which represents the breathing zone for the
workers feeding the shredder. Clearly, the experimental
results, obtained during this test case, are not on the
initial release as defined within the scope of the model
and its use (for industrial scale shredders) but related to
the occupational exposure assessment. The data avail-
able for the two test cases is shown in Table 4.

To obtain the model predicted results corresponding
to the two test cases, the a priori probabilities were set
to 100% for the states shown in Table 4 (i.e., 100%
probability for state 2 in case of hardness composite;
state 1 in case of nano-object size, etc.). The obtained

probabilities for four output variables were noted and
are shown in Table 5. For test case 1, all four goal
variables have an agreement between their model pre-
dictions and experimental values. The model showed
79% of the released particles to be of a composite
nature, of which some can be matrix material only.
The current model does not have the ability to predict
the release of matrix material only. For the test case 2,
the state 2 is most probable for both composition of
released particles and size of particles as per the
model which also agrees with the experimental data
from the case too. However, number of released par-
ticles is underestimated by the model (i.e., state 1) as
the experimental value is higher than predicted. The
experimental values for the mass of released particles
were not available for this test case. If the model
predicted values are split almost equally among two
states (e.g., states 1 and 2 for size of released particles
in both test cases), it can be interpreted as released
particles have two size modes. In such a case, although
partial, we mention an agreement between predicted

Table 4 Values of the input variable for two test cases

Variables Test case 1
Variable state

Test case 2
Variable state

Remarks (if any)

Hardness composite State 2: 5–6 State 1: 3–4

Nano-object size State 1: < 10 nm State 3: 50–100 nm

Isotropy composite State 1: Isotropic State 3: Anisotropic

Toughness composite State 1: Tough State 2: Not tough

Brittleness composite State 2: Ductile State 2: Ductile For test case 2, a clear distinction
is hard to make as the test sample
is ductile in bulk but when unrolled,
the deposit is moderately brittle
(i.e., releases dust when crumpled)

Particles nano in composite State 2: 1–10% State 2: 1–10% Due to its confidential nature,
the manufacturer did not disclose
the exact formulation of the electrode
coatings but the range is correct.

Affinity nanomaterial in matrix State 4: Chemically
completely inbound

State 2: Weakly bonded

Dispersion state State 1: Well dispersed State 4: Layered with metallic foil

Primary or secondary shredder Primary Primary

Number of shafts State 1: Single State 1: Single

Width of knives State 2: 2–5 cm State 3: > 5 cm

Number of teeth State 2: 1–7 State 1: No teeth

Sieve used State 1: Yes State 1: Yes

Input size State 4: > 10 × 10 cm2 State 4: > 10 × 10 cm2

Output size State 1: < 1 × 1 cm2 State 1: < 1 × 1 cm2
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and experimentally observed values. Even though the
outcomes seem overall promising, nevertheless, no
final conclusion can be drawn here on the predictive
capacity of the model on nanomaterial release—neither
in the favor of the model (as only one test case to
support) or against (as experimental conditions of test
case 2 are out of the scope of the model). Moreover,
both test cases are fairly similar in input values to
some extent, and therefore, they do not test the param-
eter space of the model. The availability of more
experimental data is crucial to reach any conclusion.

Sensitivity analysis

In Fig. 2, we show the tornado diagrams. Highly sensi-
tive input variables affect the results more significantly
and appear towards the top of the diagram.
Corresponding to each input variable, its spread is also
shown by taking the absolute of the difference between
two extreme points of the corresponding bar. The spread
allows the quantification of the sensitivity.

Figure 2a shows that number of released particles is
most sensitive to input size with a negative correlation,
i.e., by increasing the input size of the material to shred
(input size state 1 → state 3), the number of released

particles decreases. For the second most sensitive pa-
rameter, i.e., output size the sensitivity decreases by
tenfold (6 × 1010→ 6 × 109). The subsequent less sensi-
tive input variables in the order of decreasing sensitivity
are (i) isotropy composite (i.e., anisotropy induces an
increase in the number of released particles), (ii) sieve
used (i.e., use of a sieve increases the number of released
particles), (iii) primary or secondary shredder (i.e.,
shredding the already shredded material increases the
number of released particles), (iv) width of knives (i.e.,
increasing the width of knives increases the number of
released particles), and (v) particles nano in composite
(i.e. increasing the mass% of the nanomaterial in per
unit mass of the matrix increases the number of released
particles). Mass of released particles also has similar
results of sensitivity analysis (see Fig. 2b) which is
understandable from the fact that it has number of re-
leased particles as one of its parent nodes.

Number of shafts which signifies the rotating speed
of the shredder affects the size of released particles
most, as seen in Fig. 2c. A configuration transition from
single shaft (operating at higher speed of 80–12 rpm) to
the multiple shafts (operating at lower speed of 10–
30 rpm) increases the size of the released particles.
While the increase in the affinity of nanomaterial in

Table 5 Comparison between experimental and model predicted results to determine the predictive capacity of the model

Goal Variable

Test case 1 Test case 2

Experimental result Model predicted result

Agreement: 
Exp. and 

model 
predicted 

result

Experimental result Model predicted result

Agreement: 
Exp. and 

model 
predicted 

result 

Number of 
released 
par�cles

The total number 
concentra�on (shown 
by FMPS) produced by a 
composite plaque (mass
= 28.4 g) ≈ 26000 cm-3

(a�er removing back-
ground par�cles).   

State 1:  
<103 g-1 Yes

The total number 
concentra�on 
(shown by FIDAS) 
produced by 3 kg 
electrode ≈ 1860 
cm-3

State 2: 103−106 g−1 No

Composi�on 
of released 

par�cles

Scanning electron 
microscopy show that 
no nano-clay par�cles
separated from the 
matrix.

State 3: 
Composite Yes

Scanning electron 
microscopy show 
micrometric 
agglomerates of 
carbon

State 2: Agglomer-
ated or aggregated 
pure nanomaterial

Yes

Size of 
released 
par�cles

The size mode 
measured by FMPS= 11 
nm . 

State 1:  
<102 nm Yes

The size mode 
measured by 
FIDAS= 250 nm

State 2: 102 −
2.5 × 103 nm Yes

Mass of 
released 
par�cles 

For a plaque ge�ng 
shredded in 15 s, the 
mass of par�cles 
measured by DustTrak= 
0.014 mg.m-3 in an air 
flow rate of 323 m3.h-1. 

State 1:    
<10 μg/kg Yes N.A. N.A. - N.A.
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matrix, isotropy composite, nano-object size, and hard-
ness composite increases their size, an increase in the
dispersion, brittleness composite, and toughness com-
posite decreases their size.

For the composition of released particles, affinity
nanomaterial in matrix and their dispersion state are
the most effective input variables. The strong bonding of

the nanomaterial to the matrix increases the probability
of the nanomaterial to release in association with the
matrix, i.e., in the composite form. Consequently, the
release of nanomaterial, either individually or as ag-
glomerated/aggregated, becomes less probable. This
can be easily observed in Fig. 2d–f. Similarly, if the
nanomaterial is not well dispersed in the matrix, the
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Fig. 2 Sensitivity analysis of the model showing the most influential input variables and the magnitude of their influence (in terms of bar
spread) for a number, b mass, c size, and d–f composition of released particles
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probability of its release in an agglomerated form is
higher than as individual or composite. The only process
parameter which is relevant in deciding the composition
of the released particles is the number of shafts. A single
shaft system tends to release individual nanoparticles
due to higher input energy.

Discussion

Various case studies which were carried out within the
framework of the FutureNanoNeeds project and fo-
cussed on the value chains pertaining to the use or
treatment of different nanomaterials concluded that in
all instances the end-of-life stage is critical with respect
to emission to environmental compartments and poten-
tial for transformation. It appeared that the potential
release of nanomaterial containing e-waste during
recycling processes (e.g., shredding) and their system
behavior is relatively unexplored and/or unknown. For
this reason, a BBN model was developed to forecast
nanomaterial release during the shredding of WEEE by
considering three selected value chains case studies—
PV panels, Li-ion batteries, and electronic displays. The
selection of the input material variables, which were
chosen to be specific to final product and not to
nanomaterial, allows the model to be applicable to the
shredding of a wide range of products and not limited to
WEEE. The model can itself allow the development of
safer-by-design (Goswami et al. 2017; Shandilya et al.
2015a) approach by testing several formulations and
end-of-life scenarios without experiments.

The input variables of the model are physical end-
points which are considered to be sufficient and neces-
sary to predict release. All other properties which seem
to be relevant can either be described by these input
variables or have these input variables as endpoints. For
example, for the type of used polymer or surface coating
of nanomaterial or presence of additives (dispersing
agents, etc.), the variable affinity nanomaterial in matrix
can be an endpoint affecting release. To include shred-
ding process parameters, a priori probability elicitations
were done considering different power/energy configu-
rations, automatic and manual feeding, different designs
for different size ranges of fragments produced, different
collection systems of fragments (e.g., gravity, vacuum,
etc.), different sized or configuration of shredder (in-
cluding throughput), open or enclosed shredder (e.g.,
encasings), and ventilation systems.

Limitations

Scoping of the shredding case prior to the expert meet-
ings was crucial in order to narrow down the system
boundaries and the developed network. The choice of
the material properties, shown in Table 1, does not
pertain to nanocomposites reinforced with fibrous
nanomaterials like nanofibers and nanotubes, and hence,
they are excluded from the model. These fibrous
nanomaterials have particular physical and chemical
properties due to their high aspect ratio. Consequently,
their release behavior is assumed to be different from
that of particulates. Additionally, and although we did
not address the health aspects of the materials released,
the high risk of these nanofibers was taken into consid-
eration for excluding them. Like asbestos fibers, fibrous
and low solubility nanomaterials are shown to have
asbestos like properties and are able to penetrate the
pleural cavity and cause inflammations there (Xu et al.
2012). If these nanomaterials were to be included, one or
more separate/additional sets of input material parame-
ters would be required which account for their specific
characteristics such as heat transfer, vibrations, tensile
strength, and extremely high specific surface area.
These sets should be based on nanofibers having the
same properties in common such as tensile strength, heat
conductivity, and specific surface area. Then switch
variables (asking to select either a fibrous material group
or particulate nanomaterial) would be required which
allows their selection (as is done in the present article for
the choice between primary or secondary shredder).
Inclusion of these materials into the BBN model would
call for validation of the influence of their parameter sets
on the predicted results.

The release is assumed to occur (if relevant) within
the Local Control Influence Region (LCIR) which is a
virtual boundary around a source that represents the zone
of influence of any local control system (Schneider et al.
2011). The release to the environmental compartments
(air, soil, and water) and waste flow processes (wastewa-
ter treatment plants, waste-in-storage, landfills) are ex-
cluded from the scope of the present model. The Bwet^
shredding process which uses coolant is also excluded.
The time scale is not considered in the current release
scenario, since it would add much complications to the
calculation (feeding rate, release rate, etc.). The advan-
tage of such an approach is to have a simplified yet
effective starting point (baseline) which can be later
extended to nanomaterial flows to waste streams.
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Predictive capacity of the model

Although a clear agreement was observed between the
experimental and model predicted results for test case 1,
a single test case does not confirm the prediction power
of the model. The conditional probabilities for the de-
veloped BBNmodel are assessed by experts in different
domains. The obtained assessments might be inaccurate
and over- or underestimated as a consequence of incom-
pleteness of data and partial knowledge of the domain.
Since the output probabilities of a network are built from
these assessments, they may be sensitive to the inaccu-
racies involved and may even be unreliable. This may
lead to a consistent discrepancy in the model output and
the experimental results, once they are available. This
discrepancy can be eliminated by using the sensitivity
analysis outcome of the model (Section 3.3) and by
identifying which model variables can be modified to
arrive at the expected output. This can be achieved by
taking one of the individual opinions (implying a differ-
ent distribution of a priori probabilities) instead of the
group consensus. Such a model variable modification
may also require gaining further knowledge by involv-
ing additional experts on a specific subdomain. A dif-
ferent combination of expert opinions would lead to an
improved output (if differences can be narrowed down
to originate at a specific variable). For example, if some
experts take a certain effect into account and other
experts do not, what would be the resulting CPT if only
the experts with (or without) taking this effect into
account are combined? Does this CPT lead to an im-
proved output? For now, there is no way of gaining
further significant knowledge unless more pertinent ex-
perimental data becomes available.

The beliefs of the experts which were used during the
model development stemmed from the observations
during prior exposure related studies which tested the
effect of mechanical or environmental solicitations of
nano-enabled products (Hsu and Chein 2007; Li et al.
2008; Reijnders 2009; Gohler et al. 2010; Wohlleben
et al. 2011; Sachse et al. 2012; Shandilya et al. 2014b,
2015b; Ding et al. 2017b). When the sensitivity analysis
outcome is seen in the context of these studies, we find
those beliefs to be still valid and consistent. For exam-
ple, when polymer nanocomposites/paints are subjected
to UV irradiation (Hsu and Chein 2007; Li et al. 2008;
Reijnders 2009; Shandilya et al. 2015b;Wohlleben et al.
2011), an evaluation (direct or indirect) of the effect of
the affinity of the nanomaterial to the matrix on the

nanomaterial release can be done. Such an irradiation
leads to an inevitable degradation of the polymer matrix
and further increase in its brittleness, which consequent-
ly reduces the adhesion strength between the
nanomaterial and matrix. An increase in the number of
released particles and release of pure nanomaterial (in-
dividual or agglomerate) are typical observations in
these types of studies. Moreover, studies employing
the use of different mechanical solicitation means, like
slight or severe abrasion (Taber abrasion, manual or
machine sanding), drilling, and cutting (Ding et al.
2017a; Gohler et al. 2010; Sachse et al. 2012;
Shandilya et al. 2014b), conclude in general that higher
magnitude of input mechanical energy leads to the re-
duction in the released particle size mode.

Conclusions and recommendations

The present BBN model estimates the nanomaterial
release by characterizing it in terms of discrete distribu-
tions of four goal variables—number, composition, size,
and mass of released particles. The fibrous structures
with high aspect ratio are kept excluded from the scope
of the model at current stage. Fifteen system compo-
nents (eight material and seven process properties) were
used to identify relevant release parameters for shred-
ding. A combination of these components is applied in
the BBN to predict release, with a causal relationship
between the underlying variables of each component.
The total number of probabilities to elicit was over a
thousand and required the consensus of all experts. The
developed BBN shredding model can be used for a wide
range of nanocomposites and adapted for comminution
activities like milling or crushing. The model output of
release can also provide input or eventually be linked
with dispersion and exposure models.

For the shredding of PV panels, Li-ion batteries,
and electronic displays, the model currently sug-
gests that there is a 64% probability that the
released particles will have a number less than
103 particles/g of the shredded material (or mass
less than 10 μg/kg of the shredded material) with
43% probability of them having size between 100
and 2500 nm. There is an almost equal probability
of them getting released in the form of agglomer-
ated or aggregated pure nanomaterial (42%) and
composite of both nanomaterial and matrix (43%).
The model was also analyzed by evaluating its
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output vis-à-vis two specific experimental test
cases. The experimental results from the test cases
were found to be in general agreement with the
model predicted results. However, the data is too
limited to draw final conclusions at this stage. The
sensitivity analysis indicated that the number (and
hence the mass) of the released particles are pri-
marily controlled by the size of the material fed to
the shredder (i.e., input size). In contrast, control-
ling the size of the released particles is rather
complicated as it is controlled by various variables
like affinity between nanomaterial and matrix, isot-
ropy of the composite, nano-object size, and the
amount of the energy input (represented by num-
ber of shafts). Dispersion state, affinity, and num-
ber of shafts are the most influential ones to de-
cide the composition of the released particles.

With the availability of more field data and
consequently with more specific sensitivity analy-
ses, these outcomes could provide some guidance
to further investigate the reliability of the model
output with respect to the conditional probabilities
and to shed light on the significance of input
parameters in relation to output results. To enhance
the quality of the prediction of release of
nanomaterials from shredding nanomaterial con-
taining WEEE, it is recommended to select the
experts using criteria (see, e.g., Hung et al. 2008;
Kandlikar et al. 2007; Knol et al. 2010; Roman
et al. 2012) like substantial contribution to scien-
tific literature in fields like nanomaterial and/or
particulate matter release due to physical process-
es, the capacity and willingness to contribute to
further development of the BBN model; and open-
ness to accepting deviating opinions. In case the
model is extended to predict exposure of workers,
which it does not now, the set of process-related
input variables has to be extended with parameters
that describe local exhaust and air filtration sys-
tems and variables that further describe the local
control influence region (Tielemans et al. 2008).
The prediction of the worker exposure in the fu-
ture model should also include the fate of initially
released nanomaterials when entering the worker’s
near field.
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